skip to main content


Search for: All records

Creators/Authors contains: "Seidel, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. We introduce and prove the “root theorem”, which establishes a condition for families of operators to annihilate all root states associated with zero modes of a given positive semi-definite k-body Hamiltonian chosen from a large class. This class is motivated by fractional quantum Hall and related problems, and features generally long-ranged, one-dimensional, dipole-conserving terms. Our theorem streamlines analysis of zero-modes in contexts where “generalized” or “entangled” Pauli principles apply. One major application of the theorem is to parent Hamiltonians for mixed Landau-level wave functions, such as unprojected composite fermion or parton-like states that were recently discussed in the literature, where it is difficult to rigorously establish a complete set of zero modes with traditional polynomial techniques. As a simple application, we show that a modified V1 pseudo-potential, obtained via retention of only half the terms, stabilizes the ν=1/2 Tao–Thouless state as the unique densest ground state.

     
    more » « less
  4. We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels, demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states, specifically at filling factor\nu=2/3ν=2/3. The emergent Entangled Pauli Principle (EPP), introduced in [Phys. Rev. B 98, 161118(R) (2018)] and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the topological characteristics of the fluid, including charge and braiding statistics of excitations, and effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We conjecture that parton-like states generally span the subspace of many-body wave functions with the two-bodyMM-clustering property within any given number of Landau levels, that is, wave functions withMMth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence on variables. General arguments are supplemented by rigorous considerations for theM=3M=3case of fermions in four Landau levels. For this case, we establish that the zero mode counting can be done by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state approach of [Phys. Rev. X 1, 021015 (2011)] to show that the elementary (localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall states encodes all universal properties. Specifically, for parton-like states, we establish a link with tensor network structures of finite bond dimension that emerge via root level entanglement.

     
    more » « less
  5. Abstract

    Advancing a microscopic framework that rigorously unveils the underlying topological hallmarks of fractional quantum Hall (FQH) fluids is a prerequisite for making progress in the classification of strongly-coupled topological matter. We present a second-quantization framework that reveals an exact fusion mechanism for particle fractionalization in FQH fluids, and uncovers the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level. We show the first exact analytic computation of the quasielectron Berry connections leading to its fractional charge and exchange statistics, and perform Monte Carlo simulations that numerically confirm the fusion mechanism for quasiparticles. We express the sequence of (bosonic and fermionic) Laughlin second-quantized states, highlighting the lack of local condensation, and present a rigorous constructive subspace bosonization dictionary for the bulk fluid. Finally, we establish universal long-distance behavior of edge excitations by formulating a conjecture based on the DNA, or root state, of the FQH fluid.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)